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Abstract
We investigate the effects of Pauli blocking on the properties of hydrogen
at high pressures, where recent experiments have shown a transition from
insulating behavior to metal-like conductivity. Since the Pauli principle
prevents multiple occupation of electron states (Pauli blocking), atomic states
disintegrate subsequently at high densities (Mott effect). We calculate the
energy shifts due to Pauli blocking and discuss the Mott effect solving an
effective Schrödinger equation for strongly correlated systems. The ionization
equilibrium is treated on the basis of a chemical approach. Results for the
ionization equilibrium and the pressure in the region 4000 K < T < 20 000 K
are presented. We show that the transition to a highly conducting state is
softer than found in earlier work. A first-order phase transition is observed at
T < 6450 K, but a diffuse transition appears still up to 20 000 K.

PACS numbers: 05.30.−d, 52.65.Vv, 52.27.Aj, 52.25.Kn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physical properties of dense hydrogen are a topic of high interest, in particular the
transition of hydrogen to a highly conducting phase, which is considered a type of Mott
transition. Here, we will consider the effects of Pauli’s exclusion principle on high-density
hydrogen plasmas. The previous studies of dense hydrogen included several hypothetical
assumptions about the character of the high-density phase [1–7]. While metallization of solid
hydrogen near T = 0 K has not been clearly verified so far for pressures of up to 300 GPa [8],
metal-like features have been observed in shock compression [8–10]. Metal-like conductivities
have been observed around 140 GPa and 3000 K [9]. Recent experiments were able to reach
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that region as well and to provide detailed information on the equation of state (EoS) and the
conductivity in the Mbar region [11]. The transition to metal-like behavior changes drastically
our present understanding of the behavior of hydrogen at ultra-high pressures. In the present
paper, we will show that the most important effect leading to the destruction of bound states
is Pauli blocking. Due to the Pauli exclusion principle, the free electrons in the plasma cannot
penetrate into the interior of atoms and molecules. At high densities this leads to an enormous
pressure acting on the neutrals which will finally be ionized. The effective energy levels of
hydrogen, which strongly depend on density and weakly on temperature, are introduced into
the thermodynamic functions. In order to calculate the ionization/dissociation equilibrium we
minimize the free energy with respect to the composition. Recently, we derived an expression
for the free energy of dense hydrogen FH [12–14] in the framework of the chemical picture and
calculated the degree of ionization α and the degree of dissociation β as well as the isothermal
EoS, the hugoniots and the isentropes. Pauli blocking was taken into account by the concept
of excluded volume, which is based on the idea of space occupation by atoms and molecules.
We will show that a more fundamental approach based on an effective Schrödinger equation
[15, 16] leads to important modifications of the earlier results.

2. Effective Schrödinger equation and bound states of pairs

We focus on the interaction between atoms and free electrons and present a microscopic
treatment based on the underlying Pauli exclusion principle. In the following we will
use Rydberg units with me = 1/2, h̄ = 1, e2/4πε0 = 2, so that the binding energies of
the isolated hydrogen atom are simply E0

n = −1/n2. Embedding the hydrogen atom in
a plasma environment, the interactions with the medium are treated by an effective wave
equation [2, 15, 16],

p2ψn(p) −
∑

q

V (q)ψn(p + q) +
∑

q

H pl(p, q)ψn(p + q) = Enψn(p), (1)

where V (q) = 8π/q2 denotes the Fourier transform of the Coulomb potential. The center-
of-mass motion has been neglected, assuming the adiabatic limit me/mp � 1. In general,
the plasma Hamiltonian H pl(q) will depend also on �P and on the energy, if dynamical and
retardation effects are taken into account. The plasma Hamiltonian will shift the energy
eigenvalues En = E0

n + �En and will modify the wavefunctions ψn(p). In particular, due
to the plasma interaction the binding energies may merge with the continuum so that the
bound states disappear, if the influence of the plasma increases with increasing density. This
dissolution of bound states is called the Mott effect and has important consequences for the
macroscopic properties of the plasma. Let us evaluate now the mean-field energy shift of
bound states writing the effective Hamiltonian of pairs in a plasma as

H pl(p, q) =
∑
q ′

fe(p + q ′)[V (q)δ(q ′) − V (q ′)δ(q)], (2)

where fe(p) = 1/(exp[β(p2/2m − μ)] + 1) is the Fermi distribution. Within first order, the
shift of the energy eigenvalues is obtained with the unperturbed wavefunctions φn(p) as

En − E0
n =

∑
p,p′

φ∗
n(p)V (p′ − p)fe(p)φn(p

′) −
∑
p,p′

φ∗
n(p)V (p′ − p)fe(p

′)φn(p). (3)

The first term in equation (3) is the Pauli shift which is due to Pauli blocking, and can be
rewritten by inserting the Schrödinger equation as

�EPauli
n =

∑
p

φ∗
n(p)

(
p2 − E0

n

)
fe(p)φn(p). (4)
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Figure 1. Density dependence of the effective ground-state energy of hydrogen. The low-
temperature estimate (dash-dotted line) according to equation (8) is compared with the confined
atom approach (dotted line). The solid line corresponds to the variational approach. We have also
shown the lowering of the continuum edge (dashed line) according to equation (9).

A simple expression is found in the low-temperature and low-density limit, where the Fermi
distribution with the normalization

∑
p fe(p) = ne/2 is concentrated near p = 0. In the

zero-temperature limit, we have a Fermi sphere with Fermi momentum pF = (3π2ne)
1/3. The

energy shift of the ground state is then

�EPauli
1 = 1

2ne

(−E0
1

)|φ1(0)|2 = 32πne. (5)

At intermediate temperatures we may approximate the Fermi distribution by a Boltzmann
distribution and find

�EPauli
1 (T ) = 32πneG(T /T0) � 32πne/[1 + (77/16)T /T0], (6)

where G(x) = {√x(1 + 1/x) − √
π(1 − x − x2/4)[1 − erf(1/

√
x)] exp(1/x)}/x7/2, see also

[17], and T0 = 1Ryd/kB = 157 886 K is the ionization temperature. Similarly, the Fock term
as the second term in equation (3) can be evaluated as

�EFock
1 = −128ne

∫ ∞

0
dp

1

(1 + p2)4
= −20πne. (7)

It compensates partially the Pauli shift. Since the temperature dependence of the Fock shift is
similar to that of the Pauli shift we may use in the first approximation the same temperature
function as in (6) and the total shift is approximated by

�EFock
1 + �EPauli

1 = 12πneG(T /T0). (8)

The shift is shown in figure 1, dashed line, indicating a rather steep increase of the bound state
energy with density. Due to phase-space occupation, the ground-state energy is shifted and
may merge with the continuum of scattering states indicating the dissolution of bound states.
Considering in equation (2) the continuum part of the spectrum describing scattering states,
only the Fock shift contributes to the energy shift. The lowest energy in the continuum occurs
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at p = 0 and is shifted by �EFock(p = 0) = −∑
q V (q)fe(q) = −4pF /π = −4(3ne/π)1/3.

However, the two-particle continuum state can only be created at the Fermi momentum since
all states below that are occupied. Thus the continuum of scattering states begins at pF where
we have in the zero-temperature limit the Fock shift

�EFock(pF ) = −
∑

p

V (�p − �pF )fe(p) = −2pF /π = −2(3/π)1/3n1/3
e , (9)

shown also by the dashed line in figure 1. Extrapolating the low-density results to higher
densities, the ground state disappears in the first approximation at a density ne � 0.015. This
corresponds to an average distance of r0 � 2aB and is below the Mott criterion. The Mott
condition r0 � aB with (4π/3)ner

3
0 = 1 expresses the idea that atoms are destroyed if the

mean distance of the electrons is equal to or smaller than the Bohr radius. There exist many
alternative estimates of the binding energy shift. For example, the confined atom model [2, 19]
assumes that the atom is embedded into a sphere with radius r0. In the first approximation
this theory gives the shift (in Rydberg units) �Eca

1 = π2r−2
0 . Correspondingly, the binding

energy would disappear at r0 � 3aB , i.e., already at a much smaller density (see also figure 1).
Better estimates based on numerical solutions of the Schrödinger equation give a value of
about r0 � 2aB [19]. Our estimate is in the same region.

3. Evaluation of the mean-field energy shift by the variational approach

According to our estimate, the effective binding energy would disappear at ne � 10−2. This
seems to be too early; the reason is that perturbation approximations tend to overestimate
effects. Better results may be obtained by variational approximations to the solution
of the effective Schrödinger equation. To apply the Ritz variational approach, we have
to symmetrize the Hamiltonian in the effective wave equation introducing the function

n(p) = ψn(p)[1 − fe(p)]−1/2. We will consider the zero-temperature case and use the
ansatz corresponding to a variable Bohr radius,


0(p;α) = 8π1/2α−3/2(1 + p2/α2)−2. (10)

Here α is a parameter which characterizes the occupation in the momentum space. In a more
refined approach, we may take into account that no states below the Fermi momentum are
available. The shift of the binding energy as a function of the density is shown in figure 1.
Within a better approximation we take the Fermi function in the zero-temperature limit,
fe(p) = �(pF − p), and evaluate the Pauli blocking shift integrating over the wavefunction

0(p;α). We obtain

�EPauli
1 ≈ 4π

(2π)3

∫ pF

0
dpp2[p2/α2 + 1]ψ2

0 (p)

= 4α2

π

[(
p2

F

/
α2 − 1

)
pF /α(

1 + p2
F

/
α2

)2 + arctan(pF /α)

]
. (11)

We calculate the temperature dependence of the Pauli blocking term by replacing the zero-
temperature Fermi function in the interaction term by the finite-temperature distribution. It
can be seen that the temperature dependence of the Pauli blocking term becomes weak.
Even within the variational approach, the densities where the energy levels disappear and
consequently full ionization occurs, are evidently still too low to explain the observed effects.
We include now the Fock term which is of the same order as the Pauli blocking term. Even if
the Fock term is not of primary importance for the disappearance of the bound state energy, it
has to be included in the total shift of bound and scattering states to be consistent (so-called
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Figure 2. Results of a numerical evaluation of the Pauli shift (dots) and the Fock shift (diamonds)
for the temperature T = 5000 K in comparison to the interpolation formulae (13) and (14) (bold
lines) and the Boltzmann approximation (thin lines).

conserving approximations). In the zero-temperature limit we get after some transformations
the integral

�EFock
1 = − 64

π2

∫ ∞

0

p dp

(1 + p2)4

∫ pF

0
k dk ln

(p + k)

|p − k| = − 4

3π
p3

F

5 + 3p2
F(

1 + p2
F

)2 , (12)

which reproduces in the low-density limit the value (−20πne) given above in equation (7). We
may estimate the temperature dependence as above in perturbation theory. For convenience
of the numerical procedure in the later variational calculations of the free energy we
constructed an interpolation formula between the Boltzmann and the zero-temperature limits,
i.e. equations (6) and (11), taking into account a few points which we have evaluated
numerically,

�EPauli
1 = 4

π

{
pF

[
c(T )p2

F − 1
]

[
1 + c(T )p2

F

](
1 + p2

F

) + arctan(pF )

}
. (13)

This is nearly identical to the asymptotic representation except that we had to introduce a fit
function c(T ) = (G(T ) − 1)/3 in order to provide the correct derivative at small densities. A
similar interpolation can be given for the Fock term

�EFock
1 = −20π

g
ln

(
1 + gne + kn2

e + ln3
e

)
(14)

with the fit parameters g = 261.65, k = 60 000, l = 334 369. A comparison of the
density dependence according to the interpolations introduced above with numerical estimates
of the integrals is shown in figure 2 for T = 5000 K. The agreement with the data is reasonable
for this temperature. In the region of interest 5000 K < T < 15 000 K, the temperature
dependence is quite weak. The remaining shifts are smaller and will be neglected here, see
also [15, 18, 20, 21].
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Figure 3. Degree of ionization and degree of dissociation at T = 5000, 10 000 K and 15 000 K as
a function of the total density of protons.

4. Ionization equilibrium and thermodynamics in the chemical picture

We construct the thermodynamic functions of hydrogen by using a chemical approach to
the free energy which recently was applied to temperatures between 2000 and 10 000 K
[12, 13, 22–24, 26, 27]. The effects of pressure dissociation, H2 � 2H, and ionization,
H � e + p, are taken into account so that the transition from a molecular fluid at low
temperatures and pressures through a partly dissociated, warm fluid at medium temperatures
of some thousand Kelvin to a fully ionized, hot plasma above 10 000 K can be explained.

We will not go into the details of the free-energy expression used earlier. Here we take
the expression FH as applied so far [12–14] and add the contribution due to the energy shifts

F(V, T ,N) = V (na + 2nm)�E(n′, T ) + FH, (15)

where na and nm are the number densities of the free atoms and molecules. The shift of the
atomic levels is approximated by the sum of Pauli and Fock terms. Furthermore, we assumed
that molecules are simply composites of two atoms so that the shifts are additive. We took
into account ionization and dissociation processes. The degrees of ionization and dissociation
defined by [12]

α = ni

ni + na + 2nm

, βa = na

ni + na + 2nm

, βm = 2nm

ni + na + 2nm

(16)

are the variational parameters of our problem. The free energy has to be minimized with
respect to them. We note that βa is the relative amount of protons bound in atoms and βm is the
relative amount bound in molecules. Due to the balance relation for the total proton density
we have the simplex relation α + βa + βm = 1. Atoms appear only in a rather narrow region
of the temperature—density plane. The density dependence of the degrees is represented in
figure 3. We calculated the chemical equilibrium by means of a numerical variational procedure
based on direct minimization of the free energy [25]. We prefer here the minimization of the
free energy as compared to the Saha approach because it finds all existing minima, including
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Figure 4. Pressure isotherms (left) and isotherms of the relative pressure (right).

those at the boundaries. The transition density is between 1023 and 1024 protons cm−3. This
means we are in the region around 0.5 g cm−3 for hydrogen and 1 g cm−3 for deuterium.
The transition to full ionization is rather soft. In principle, all thermodynamic functions may
be calculated from the free energy (15) by derivatives. Examples of our results for the pressure
and the relative pressure (in relation to the reference pressure of a fully ionized plasma) are
shown in figure 4. We see a phase transition of first order below 6450 K and a diffusive
transition, defined by wiggles in the relative pressure p/(npkBT ) up to 20 000 K.

5. Discussion and conclusions

In order to understand the transition to metal-like conductivity in hydrogen at high pressures,
we studied the role of Pauli blocking effects. We calculated the Pauli and Fock energy shifts
by solving effective Schrödinger equations for strongly correlated systems. The ionization
and dissociation equilibria were treated within a chemical approach. We have shown that
Pauli blocking effects have a strong influence on the ionization equilibria and the character of
the transition in the high pressure region. We presented explicit calculations of the ionization
and dissociation equilibria from low to high densities in the region 4000 K < T < 20 000 K.
An even more detailed description should take into account higher order contributions to the
shifts [20].

The transitions to highly conducting states occur at densities around 3×1023 protons cm−3.
The corresponding pressures are in the region of (0.8–1.2) × 1011 Pa, i.e. around a Mbar. The
first order phase transitions are softer than observed in earlier work. In the new theory, the
first order transition appears only at T < 6450 K, however a diffuse phase transition detected
by wiggles of the relative pressure remains up to 20 000 K.
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